Newton's $1^{\text {st }}$ Law - Inertia

Objects have inertia in direct proportion to mass.
Inertia and mass are UNIVERSAL - weight is NOT (depends on location)

Weight and mass are NOT the same thing!

$$
g=\frac{F_{g}}{m}
$$

Dynamics Review Map

Newton's $3^{\text {rd }}$ Law - Action/Reaction

For every action there is an equal and opposite reaction.
ex. \#1 : A planet and its moon exert equal and opposite gravitational forces on one another.
ex. \#2 : Pushing an object (even one that moves) results in an equal push back FROM the object.

Pushes as hard as it needs to in order to stop motion - until it reaches a maximum, at which point the object slides
ex. object held motionless by friction or cars
turning corners

Kinetic Friction

Object is sliding along a surface
ex. Block pulled along table, skis sliding on

snow, skidding tires.

Circular Motion

Objects move in circular paths when pulled toward the center of the path by a force.

Centripetal Force Systems

 Gravitational : $F_{g}=F_{c}$Mass on a String : $F_{T}=F_{C}$
Car Turning a Corner: F_{f} (static) $=F_{c}$

$$
F_{c}=m a_{c} \quad a_{c}=\frac{v^{2}}{r}
$$

$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$

Universal Gravitation

nverse square relationship between F_{g} and r Double $r \rightarrow \frac{1}{4} F_{g}$
Triple $r \rightarrow \frac{1}{9} F_{g}$
Halve $r \rightarrow 4 F_{g}$
vectors - magnitude and direction acceleration force
scalars - magnitude only coefficient of friction spring constant gravitational field strength

Adding Vectors

Adding \boldsymbol{A} and \boldsymbol{B} gives resultant \boldsymbol{R}
The equilibrant for the system of vectors \boldsymbol{A} and \boldsymbol{B} would be \boldsymbol{E}

Finding a Missing Component

Adding \boldsymbol{A} and \boldsymbol{B} gives resultant \boldsymbol{R}
To find the missing vector, complete the triangle between \boldsymbol{A} and \boldsymbol{R}

Changing Angles
Decreasing angle increases resultant force

4
Increasing angle decreases resultant force

equilibrium

