Kinematics

- Scalar quantities only have a magnitude (size) - ie. speed, distance, energy
- Vector quantities have a magnitude (size) and direction - ie. force, velocity, momentum, displacement
- Resultant is the sum of vectors (Head-to-Tail Method). Equilibrant: same size, but opposite direction
- Projectile Motion - the horizontal acceleration is ZERO and the vertical acceleration is $9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
- Horizontal Projectiles - initial VERTICAL velocity is ZERO
- Projectiles at an Angle
- break velocities into x and y components $\left(\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \Theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \sin \Theta\right)$
- at its maximum height, vertical velocity equals ZERO
- the time to reach its maximum height is HALF of its total flight time
- $d=v t$ is the ONLY equation you can use for HORIZONTAL motion
- Greatest range (horizontal distance) if fired at 45 degrees
- Graphing Motion
- Distance vs. Time Graphs
- slope of the line equals velocity
- curved line indicates accelerated motion
- straight line indicates constant velocity $(a=0)$
- Velocity vs. Time Graphs
- slope of the line equals acceleration
- area underneath the line equals the distance covered

Forces and Friction

- Newton's $1^{\text {st }}$ Law: Inertia = mass of an object
- Newton's $2^{\text {nd }}$ Law: $\mathrm{F}_{\text {net }}=$ ma (most important equation in mechanical physics)
- Newton's $3^{\text {rd }}$ Law: for every action (force), there is an equal and opposite reaction (force)
- Universal Law of Gravity: as you move farther away from an object, F_{g} decreases; as you increase the mass of two objects, F_{g} increases
- Force of Gravity $=$ Gravitational Force $=$ WEIGHT $=$ F $_{g}=\mathbf{m g}$
- Normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$ is force from surface pushing perpendicular to the surface ($\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{g}}$ IF on a flat surface that is NOT accelerating vertically)
- Elevator problems: Normal force = scale reading
- if accelerating up: you appear heavier on a scale (increase in F_{N})
- if accelerating down: you appear lighter on a scale (decrease in F_{N})
- Static friction is GREATER than kinetic friction
- In order to START motion, calculate STATIC friction; in order to keep it moving at a constant speed, calculate KINETIC friction
- If an object is on an INCLINE plane: $\mathrm{F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{gx}}=\mathrm{F}_{\mathrm{g}} \sin \Theta$ and $\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{gy}}=\mathrm{Fg}_{\mathrm{g}} \cos \Theta$

Circular Motion

- NEED TO KNOW EQUATION: Circular speed $=v=2 \pi r / T$
- Circular speed is TANGENT to the circle; Centripetal Acceleration and Force are directed TOWARD the CENTER

Momentum and Impulse

- When an object experiences a net force for a period of time, its momentum changes ($\mathrm{J}=\mathrm{Ft}=\Delta \mathrm{p}$)
- NEED TO KNOW EQUATION: Conservation of Momentum: $\mathrm{mv}+\mathrm{mv}=\mathrm{mv}+\mathrm{mv}$, if they stick together: $\mathrm{mv}+\mathrm{mv}=(\mathrm{m}+\mathrm{m}) \mathrm{v}$
- In the case of an explosion: total momentum before $=0$ (therefore, the momentum of each object after are EQUAL and OPPOSITE; mv = mv)

Energy, Work, and Power

- Work $=\mathrm{Fd}=\Delta \mathrm{E}$ (if no motion, no work, no change in energy)
- The force that is PARALLEL to displacement is the amount of force being done
- Power is the RATE of doing work/using energy ($\mathrm{P}=\mathrm{W} / \mathrm{t}$)
- Potential Energy $=$ Stored Energy (Gravitational PE is based on HEIGHT, Elastic PE is based on how far a spring is stretched)
- Kinetic Energy = Energy from Motion
- NEED TO KNOW EQUATION: Conservation of Energy: KE + PE = KE + PE
- Work can either add or take away energy
- Internal Energy = HEAT GENERATED BY FRICTION

Electrostatics, Electricity, and Magnetism

- ONLY NEGATIVE CHARGES MOVE (objects become positively charged by losing electrons; become negatively charged by gaining electrons)
- Charge of an electron $=$ charge of a proton $=$ elementary particle $=1.6 \times 10^{-19} \mathrm{C}$
- You CAN NOT HAVE FRACTION OF ELEMENTARY CHARGES (ie. - 1.65 e)
- Conservation of charge: Total charge is divided evenly between objects that come in contact with each other
- Electric Field: Positive charges - electric field goes AWAY/OUT; Negative charges electric field goes TOWARD/INWARD
- MAKE TABLES FOR CIRCUIT PROBLEMS
- Series Circuit - ONE Path for current
- Current remains constant. Increasing \# of resistors; decreases total current
- Parallel Circuit - MULTIPLE paths for current
- Voltage remains constant. Increasing \# of resistors; decreases total resistance and increases total current
- Magnetic Field: Field lines go AWAY from NORTH POLE and TOWARD the SOUTH POLE. Field lines never overlap

Waves and Sound

- Transverse waves (ie. light/EM waves) = motion perpendicular to energy; Longitudinal waves (ie. sound) = motion parallel to energy
- Period is the time for one cycle; Frequency is the number of cycles in one second
- Constructive Interference: increase in amplitude (size of wave) (waves 0° in phase)
- Destructive Interference: decrease in amplitude (size of wave) (waves 180° out of phase)
- Standing wave - created by two waves with same amplitude, wavelength, frequency, traveling the same medium, but it OPPOSITE directions.
- Nodes (destructive interference) and antinodes (constructive interference) in a standing wave
- Doppler Effect - change is apparent frequency due to motion (If receding, f decreases and wavelength increases. If approaching, f increase and wavelength decreases)
- Resonance - forced vibration (think of Opera singer shattering glass)
- Diffraction - bending/spreading of a wave around a barrier

Light

- ALL electromagnetic waves (gamma rays, x-rays, radio...) move at the speed of light ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
- Law of reflection: Angle of incidence = Angle of reflection
- MEASURE FROM THE NORMAL!!!!!!!!!!!!!!!!
- Dispersion - Separating white light into each' individual colors (wavelengths) (think rainbows)
- Refraction
- When light (EM) wave enters a GREATER index of refraction: speed and wavelength decrease, it bends TOWARD the normal, frequency remains constant
- When light (EM) wave enters a SMALLER index of refraction: speed and wavelength increase, it bends AWAY from normal, frequency remains constant

Modern Physics I am out of space and we just covered this unit. Use your Ref Tabs.

