NEED TO KNOW PHYSICS!!!

Kinematics

- ♦ Scalar quantities only have a magnitude (size) ie. speed, distance, energy
- Vector quantities have a magnitude (size) and <u>direction</u> ie. force, velocity, momentum, displacement
- Resultant is the sum of vectors (Head-to-Tail Method). Equilibrant: same size, but opposite direction
- Projectile Motion the horizontal acceleration is ZERO and the vertical acceleration is 9.81 m/s/s
 - Horizontal Projectiles initial VERTICAL velocity is ZERO
 - Projectiles at an Angle
 - break velocities into x and y components ($A_x = A\cos\Theta, A_y = A\sin\Theta$)
 - at its maximum height, vertical velocity equals ZERO
 - the time to reach its maximum height is HALF of its total flight time
 - d = vt is the ONLY equation you can use for HORIZONTAL motion
 - Greatest range (horizontal distance) if fired at 45 degrees

♦ Graphing Motion

- Distance vs. Time Graphs
- slope of the line equals velocity
- curved line indicates accelerated motion
- straight line indicates constant velocity (a = 0)
 - Velocity vs. Time Graphs
- slope of the line equals acceleration
- area underneath the line equals the distance covered

Forces and Friction

- Newton's 1st Law: Inertia = mass of an object
- Newton's 2^{nd} Law: F_{net} = ma (most important equation in mechanical physics)
- Newton's 3rd Law: for every action (force), there is an equal and opposite reaction (force)
- Universal Law of Gravity: as you move farther away from an object, F_g decreases; as you increase the mass of two objects, F_g increases
- ◆ Force of Gravity = Gravitational Force = WEIGHT = F_g = mg
- Normal force (F_N) is force from surface pushing perpendicular to the surface (F_N = F_g IF on a flat surface that is NOT accelerating vertically)
- Elevator problems: Normal force = scale reading
 - if accelerating up: you appear heavier on a scale (increase in F_N)
 - if accelerating down: you appear lighter on a scale (decrease in F_N)
- Static friction is GREATER than kinetic friction
- In order to START motion, calculate STATIC friction; in order to keep it moving at a constant speed, calculate KINETIC friction
- If an object is on an INCLINE plane: $F_f = F_{gx} = F_g \sin \Theta$ and $F_N = F_{gy} = F_g \cos \Theta$

Circular Motion

_

- **NEED TO KNOW EQUATION:** Circular speed = $v = 2\pi r/T$
- Circular speed is TANGENT to the circle; Centripetal Acceleration and Force are directed TOWARD the CENTER

Momentum and Impulse

- When an object experiences a net force for a period of time, its momentum changes $(J=Ft=\Delta p)$
- NEED TO KNOW EQUATION: Conservation of Momentum: mv + mv = mv + mv, if they stick together: mv + mv = (m+m)v
- In the case of an explosion: total momentum before = 0 (therefore, the momentum of each object after are EQUAL and OPPOSITE; mv = mv)

Energy, Work, and Power

- Work = $Fd = \Delta E$ (if no motion, no work, no change in energy)
- The force that is PARALLEL to displacement is the amount of force being done
- Power is the **RATE** of doing work/using energy (P = W/t)
- **Potential Energy = Stored Energy** (Gravitational PE is based on HEIGHT, Elastic PE is based on how far a spring is stretched)
- **Kinetic Energy** = Energy from Motion
- **NEED TO KNOW EQUATION**: Conservation of Energy: KE + PE = KE + PE
- Work can either add or take away energy
- Internal Energy = HEAT GENERATED BY FRICTION

Electrostatics, Electricity, and Magnetism

- ONLY NEGATIVE CHARGES MOVE (objects become positively charged by losing electrons; become negatively charged by gaining electrons)
- Charge of an electron = charge of a proton = elementary particle = $1.6 \times 10^{-19} \text{ C}$
- ◆ You CAN NOT HAVE FRACTION OF ELEMENTARY CHARGES (ie. 1.65 e)
- Conservation of charge: Total charge is divided evenly between objects that come in contact with each other
- Electric Field: Positive charges electric field goes AWAY/OUT; Negative charges electric field goes TOWARD/INWARD
- <u>MAKE TABLES FOR CIRCUIT PROBLEMS</u>
- Series Circuit ONE Path for current
 - Current remains constant. Increasing # of resistors; decreases total current
- Parallel Circuit MULTIPLE paths for current
 - Voltage remains constant. Increasing # of resistors; decreases total resistance and increases total current
- Magnetic Field: Field lines go AWAY from NORTH POLE and TOWARD the SOUTH POLE. Field lines never overlap

Waves and Sound

- Transverse waves (ie. light/EM waves) = motion perpendicular to energy; Longitudinal waves (ie. sound) = motion parallel to energy
- Period is the time for one cycle; Frequency is the number of cycles in one second
- Constructive Interference: increase in amplitude (size of wave) (waves 0° in phase)
- Destructive Interference: decrease in amplitude (size of wave) (waves 180° out of phase)
- Standing wave created by two waves with same amplitude, wavelength, frequency, traveling the same medium, but it OPPOSITE directions.
- Nodes (destructive interference) and antinodes (constructive interference) in a standing wave
- Doppler Effect change is apparent frequency due to motion (If receding, *f* decreases and wavelength increases. If approaching, *f* increase and wavelength decreases)
- Resonance forced vibration (think of Opera singer shattering glass)
- Diffraction bending/spreading of a wave around a barrier

<u>Light</u>

- ALL electromagnetic waves (gamma rays, x-rays, radio...) move at the speed of light (3 x 10⁸ m/s)
- Law of reflection: Angle of incidence = Angle of reflection
- Dispersion Separating white light into each' individual colors (wavelengths) (think rainbows)
- Refraction
 - When light (EM) wave enters a GREATER index of refraction: speed and wavelength decrease, it bends TOWARD the normal, frequency remains constant
 - When light (EM) wave enters a SMALLER index of refraction: speed and wavelength increase, it bends AWAY from normal, frequency remains constant

<u>Modern Physics</u> I am out of space and we just covered this unit. Use your Ref Tabs.