NAME: \qquad
Topic 11.2 - Power generation and transmission - AHL
THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers (in spaces provided) and units!

A rectangular coil of wire having dimensions 4.5 cm by 6.8 cm has 135 turns. It is rotating at a frequency of 60 Hz in a magnetic field having a strength of 2.5 T .

1. What is its peak voltage ε_{0} ?
2. Write the equation of the time dependence of its emf.
3. \qquad
4. If the frequency is decreased to 40 Hz , what is this generator's peak voltage?
5. \qquad

The graphs of voltage and current for an ac circuit containing a resistor are shown.
4. Find the rms voltage corresponding to the induced emf whose graph is shown.
4. \qquad

5. Find the peak voltage.
5. \qquad
6. Find the angular frequency of the coil that is producing this emf. \qquad

7. Find the maximum flux linkage of the coil that is producing this emf.
7. \qquad
8. Find the rms current from the graph.
8. \qquad
9. Find the peak current.
9. \qquad
10. Write the equation which shows the time variation of the current.
10. \qquad
(hint... use ohm's law and your answer to \#2)
11. Find the resistance of the circuit.
11. \qquad
12. What is the average power dissipated by the circuit?
12. \qquad

A transformer having 145 turns in its primary winding has a 60 Hz input voltage of $V_{i n}=75$ VAC. It is desired that $V_{\text {out }}$ should be 120 VAC.
13. How many turns should the secondary winding have?
13. \qquad

14. If the current in the primary winding is 1.25 A , what will the current in the secondary winding be?
14. \qquad

The following questions are about power transmission and the power grid.
15. Explain the use of high-voltage step-up and step-down transformers in the transmission of electrical power.
16. A power plant produces a 60 Hz alternating voltage having $V_{\mathrm{rms}}=125 \mathrm{~V}$. A step-up transformer is needed to raise the plant's voltage to 765 kV . Find the ratio of N_{s} / N_{p} needed in the transformer.
16. \qquad

A power transmission cable having a diameter of 4.75 cm is made of aluminum which has a resistivity of $5.18 \times 10^{-8} \Omega \mathrm{~m}$.
17. Find the cross-sectional area of the cable in m^{2}.
17. \qquad
18. Find the resistance of this cable if it provides electricity to a township 375 km away from a power plant.
18. \qquad
19. Suppose this cable is used to supply a township with 285 MW of energy at a transmission voltage of 765 kV . What is its current? What is its heat loss. What percentage of the overall energy transmission is this?
19. \qquad
\qquad
\qquad

A circuit that consists of four diodes and a resistor is shown.
20. Label the top AC power supply terminal with a (+), and with a red pencil trace the positive current through the circuit all the way to the load resistor and the correct DC output terminal.
20. __See figure
21. Label the bottom AC power supply terminal with a $(-)$, and with a green pencil trace the negative current through the circuit all the
 way to the load resistor and the correct DC output terminal.
21. __See figure
22. If the AC power supply now reverses its polarity, determine which output terminal is (+) and which is (-).
22. TOP is \qquad
BOTTOM is \qquad

