NAME: _____

1. What is its peak voltage ε_0 ?

Topic 11.2 – Power generation and transmission – AHL

THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers (in spaces provided) and units!

A rectangular coil of wire having dimensions 4.5 cm by 6.8 cm has 135 turns. It is rotating at a frequency of 60 Hz in a magnetic field having a strength of 2.5 T.

1._____

2. Write the equation of the time dependence of its emf. 2. _____

If the frequency is decreased to 40 Hz, what is this generator's peak voltage?
 3.

The graphs of voltage and current for an ac circuit containing a resistor are shown.

4.	Find the <i>rms</i> voltage corresponding to the induced emf whose graph is shown. 4	20 10 10 10 10 10 20 t/ms -40
5.	Find the peak voltage. 5	2
6.	Find the angular frequency of the coil that is producing this emf. 6	$\begin{array}{c c} 1 \\ \hline \\ 0 \\ -1 \\ -2 \end{array}$
7.	Find the maximum flux linkage of the coil that is proc	ducing this emf. 7
8.	Find the <i>rms</i> current from the graph.	8
9.	Find the peak current.	9
10.	Write the equation which shows the time variation of (hintuse ohm's law and your answer to #2)	of the current. 10
11.	Find the resistance of the circuit.	11
12.	What is the average power dissipated by the circuit?	12

A transformer having 145 turns in its primary winding has a 60 Hz input voltage of V_{in} = 75 VAC. It is desired that V_{out} should be 120 VAC. 13. How many turns should the secondary winding have?			5	Vout
1	13	Primary	Seco	ndary

14. If the current in the primary winding is 1.25 A, what will the current in the secondary winding be?

14._____

The following questions are about power transmission and the power grid.

15. Explain the use of high-voltage step-up and step-down transformers in the transmission of electrical power.

16. A power plant produces a 60 Hz alternating voltage having $V_{\rm rms}$ = 125 V. A step-up transformer is needed to raise the plant's voltage to 765 kV. Find the ratio of $N_{\rm s}/N_{\rm p}$ needed in the transformer. 16. ______ A power transmission cable having a diameter of 4.75 cm is made of aluminum which has a resistivity of $5.18 \times 10^{-8} \Omega$ m.

17. Find the cross-sectional area of the cable in m².17.

- 18. Find the resistance of this cable if it provides electricity to a township 375 km away from a power plant.
 18. ______
- 19. Suppose this cable is used to supply a township with 285 MW of energy at a transmission voltage of 765 kV. What is its current? What is its heat loss. What percentage of the overall energy transmission is this?

A circuit that consists of four diodes and a resistor is shown.

- 20. Label the top AC power supply terminal with a (+), and with a red pencil trace the positive current through the circuit all the way to the load resistor and the correct DC output terminal.
 20. See figure
- 21. Label the bottom AC power supply terminal with a (-), and with a green pencil trace the negative current through the circuit all the way to the load resistor and the correct DC output terminal.
 21. See figure
- 22. If the AC power supply now reverses its polarity, determine which output terminal is (+) and which is (-).

terminal is (+) and which is

0

0

DC OUTPUT

22. TOP is_____

BOTTOM is_____