NAME: _____ Topic 11.3 – Capacitance

Show formulas, substitutions, answers (in spaces provided) and units!

1.	A 3.25-V battery is used to fully charge a 725 μF capacitor. How much chathe negative to the positive plate?	rge was transferred from 1
Thi 2.	ree 725 μF capacitors are connected in parallel to a 3.25 V battery. What is the equivalent capacitance?	2
3.	What is the charge on each capacitor?	3
Thi 4.	ree 725 μF capacitors are connected in series to a 3.25 V battery. What is the equivalent capacitance?	4

5. What is the voltage on each capacitor?

5. _____

A 725 μ F capacitor will be manufactured using a dielectric having a permittivity of 4.50 ε_0 and circular plates having a diameter of 0.750 cm. 6. What should the plate separation (and the thickness of the dielectric) be? 6. _____ 7. Is it likely that this large a capacity could be constructed using parallel plate architecture? ____ Why? *The following question is about the electrical energy stored in a capacitor.* 8. _____ 8. Find the energy stored in a 725 μ F capacitor charged up to 3.25 V. *C*₁ is initially charged to 3.25 V. *C*₂ is initially uncharged. C₁ 9. What is the charge on C_1 's plates? 9. 125 pF 275 pF 10. The switch is closed, connecting C_1 to C_2 . What is the new charge on the plates of C_1 ? 10._____

The following question is about a charging RC circuit. The capacitor is initially uncharged.

Make a sketch graph showing the family of curves representing the voltage across the **capacitor** after the switch is closed and as *RC* increases. Show at least three different *RC* curves, and label them "low," medium," and "high."

Topic 1.1 – Measurements in physics NAME: ______ TEAM:____

A circuit constructed of a resistor R and a capacitor C has a switch which can be made to charge and discharge the capacitor.

- 12. Label the switch position which **charges** the capacitor with an "A" at the small circle in the schematic. 12. in diagram
- 13. Label the switch position which discharges the capacitor with a "B" at the small circle in the schematic. 13. in diagram
- 14. Draw arrows in the discharge loop showing the direction of current flow during discharge. 14. in diagram
- 15. What equation does Kirchhoff's rule for V produce during discharge? Your final equation should have only these variables: q, Δq , Δt , *R* and *C*.

A 725 μ F capacitor is charged to 2.35 V. It is then discharged through a 15.0 M Ω resistor. 16. Find the time constant. 16._____

17. Find the initial charge on the plates.

18. Find the charge on the plates exactly three time constants after discharge has begun. 18.____

19. Find the capacitor's voltage 1870 s after discharge begins.

17.			

Formative Assessment

(CONTINUED FROM PREVIOUS PAGE)

20. Find the instantaneous current at <i>t</i> = 1870 s.	20
21. Find the half-life of the capacitor's voltage.	21
A timer using a capacitor and a resistor needs the RC circuit to have a half-life using a capacitor of 725 μ F, initially charged to a voltage of 6.25 V. 22. What should the value of the time constant be?	of 60.0 seconds. It will be 22
23. What value should the resistor have?	23
24. What will the capacitor voltage be at this time?	24

24._____