NAME: \qquad
Topic 11.3 - Capacitance

Show formulas, substitutions, answers (in spaces provided) and units!

1. A $3.25-\mathrm{V}$ battery is used to fully charge a $725 \mu \mathrm{~F}$ capacitor. How much charge was transferred from the negative to the positive plate?
2. \qquad

Three 725μ F capacitors are connected in parallel to a 3.25 V battery.
2. What is the equivalent capacitance?
2. \qquad
3. What is the charge on each capacitor?
3. \qquad

Three 725μ F capacitors are connected in series to a 3.25 V battery.
4. What is the equivalent capacitance?
4. \qquad
5. What is the voltage on each capacitor?
5. \qquad

A $725 \mu \mathrm{~F}$ capacitor will be manufactured using a dielectric having a permittivity of $4.50 \varepsilon_{0}$ and circular plates having a diameter of 0.750 cm .
6. What should the plate separation (and the thickness of the dielectric) be?
6. \qquad
7. Is it likely that this large a capacity could be constructed using parallel plate architecture? \qquad Why?

The following question is about the electrical energy stored in a capacitor.
8. Find the energy stored in a $725 \mu \mathrm{~F}$ capacitor charged up to 3.25 V .
8. \qquad
C_{1} is initially charged to $3.25 \mathrm{~V} . C_{2}$ is initially uncharged.
9. What is the charge on $C_{1}{ }^{\prime}$ s plates?
9. \qquad

10. The switch is closed, connecting C_{1} to C_{2}. What is the new charge on the plates of C_{1} ?
10. \qquad

The following question is about a charging RC circuit. The capacitor is initially uncharged.
11. Make a sketch graph showing the family of curves representing the voltage across the capacitor after the switch is closed and as RC increases. Show at least three different $R C$ curves, and label them "low," medium," and "high." 11. in sketch

NAME: \qquad
\qquad
A circuit constructed of a resistor R and a capacitor C has a switch which can be made to charge and discharge the capacitor.
12. Label the switch position which charges the capacitor with an " A " at the small circle in the schematic.
12. in diagram
13. Label the switch position which discharges the capacitor with a " B " at the small circle in the schematic.
13._in diagram
14. Draw arrows in the discharge loop showing the direction of current flow during discharge.
14. in diagram
15. What equation does Kirchhoff's rule for V produce during discharge? Your final equation should have only these variables: q, $\Delta q, \Delta t, R$ and C.

A $725 \mu \mathrm{~F}$ capacitor is charged to 2.35 V . It is then discharged through a $15.0 \mathrm{M} \Omega$ resistor. 16 . Find the time constant.
16. \qquad
17. Find the initial charge on the plates.
17. \qquad
18. Find the charge on the plates exactly three time constants after discharge has begun.
18. \qquad
19. Find the capacitor's voltage 1870 s after discharge begins.
19. \qquad
20. Find the instantaneous current at $t=1870 \mathrm{~s}$.
21. Find the half-life of the capacitor's voltage.
20. \qquad
21. \qquad

A timer using a capacitor and a resistor needs the RC circuit to have a half-life of 60.0 seconds. It will be using a capacitor of $725 \mu \mathrm{~F}$, initially charged to a voltage of 6.25 V .
22. What should the value of the time constant be?
22. \qquad
23. What value should the resistor have?
23. \qquad
24. What will the capacitor voltage be at this time?
24. \qquad

